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Ginzburg-Landau Model for Curved Two-Phase
Shallow Mixing Layers

Irina Eglite, Andrei A. Kolyshkin

Abstract—Method of multiple scales is used in the paperrideo
to derive an amplitude evolution equation for thestrunstable mode
from two-dimensional shallow water equations unttes rigid-lid
assumption. It is assumed that shallow mixing lagestightly curved
in the longitudinal direction and contains smalftjgées. Dynamic
interaction between carrier fluid and particlesnisglected. It is
shown that the evolution equation is the complemzBirg-Landau
equation. Explicit formulas for the computationtbé coefficients of
the equation are obtained.
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|. INTRODUCTION

weakly

In the present paper we derive the complex Ginzburg
Landau equation from the shallow water equatiordeurthe
rigid-lid assumption for the case of two-phasetsligcurved
mixing layers. The coefficients of the equation abtained in
closed form in terms of the linear stability chaeaistics of the
flow.

Il. MATHEMATICAL FORMULATION OF THE PROBLEM

Consider the two-dimensional shallow water equation
under the rigid-lid assumption

HALLOW mixing layers are widespread in nature and 0X 0y

engineering. Examples include flows at river juoet and
flows in composite and compound channels. Therettaee
basic methods which are used to analyze the dewelopof a
mixing layer in shallow water: experimental
numerical modeling and stability analysis [1]. Tvmoajor
conclusions follow from experimental investigati@[5]: (a)
bottom friction and shallowness of water layer segp the
growth of perturbations and (b) shallow mixing lageows at
a smaller rate than free mixing layer. Severaleps5]-[9]
are devoted to linear stability analysis of shallowixing
layers. Theoretical analyses in [5]-[9] confirméwitt bottom
friction stabilizes the flow and reduces the growde of a
shallow mixing layer. If a carrier fluid containslil particles
one should use two-phase flow model in order teiiles the
development of instability. Stability of two-phaews under
several simplifying assumptions is analyzed in [101]. It is
shown in [10], [11] that higher particle concentratin the
fluid has a stabilizing influence on the flow.

Linear stability analysis is the first step in amdthg
behavior of complex flows. The evolution of the mosstable
mode when the bed-friction number (introduced by €hal.
[6]) is slightly smaller than the critical valuercée analyzed
by means of weakly nonlinear theories. Such modedsused
in the past in order to analyze spatio-temporaladyins of
complex flows [12]-[17]. It is shown in [12]-[17]h&t the
amplitude evolution equation for the most unstahbiede in

both cases (Navier-Stokes equations and shallowerwat

equations under the rigid-lid assumption) is themplex
Ginzburg-Landau equation.
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where Uand V are the depth-averaged velocity components in
the Xand Y directions, respectively,u”and v’are the
components of the particle velocities;is the friction
coefficient, his water depth, Ris the radius of curvature
(1/ R <<1) and Bis the particle loading parameter (see [10],

[11)).

System (1)-(3) can be reduced to one equation
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A perturbed solution to (4) is sought in the form Here S = ¢, b/ his the stability parameter ( referred to as the
bed-friction number in the literature), wher®is the
— 2 1
XY = (y) + ey, (X, Y, 1) + 7Y, (X, y,1) (6) Ccharacteristic length scale (mixing layer width, éxample).
+ 53‘”3 (X, y,t) +..., Note that (10), (11) is an eigenvalue problem ¢tbmplex

eigenvalues areC = C, +iCi ). Base flow (8) is said to be
where £ is a small parameter which will be defined later.  gtaple if all ¢ <Oand unstable if at least one >0
1 1 )

Let {, =Uy(Y)be the base flow solution. Substitutingyiarginal stability of flow (8) is described by thelation

(6) into (4) and linearizing the resulting equatiom the ¢ =0. Problem (10), (11) is usually solved numerically

neighborhood of the base flow we obtain (details of numerical algorithm based on collocatioethod

are given in [17]). Thus, solution of (10), (11)oals one to

Llwl =0, (7) obtain the critical values of the parameters of pmeblem
SC,kC,C . A typical marginal stability curve for shallow
where

water flows is a convex curve with one maximum (the
coordinates of the maximum point in tH&, S) — plane are

L1¢ S YW Yo W T _wayywx k=k.,andS=3S))

(wa‘// 24[/0yy1// 21//0y1// ) ‘//Oy I1l. GINZBURG-LANDAU EQUATION

+ B(wlxx +¢/1yy) Assume that the bed-friction number is slightly Berahan
the critical value:

A hyperbolic tangent velocity profile of the form
S=S, (1-¢&?). (12)
u,+u, U,-U,
2 + 2 tanhy ) Now the role of the parametef in (6) becomes clear: it
characterizes how close is the paramébdo the critical value

is often used in practice in order to representothee flow for  S;. In addition, (12) implies that base flow (8) isstable if

the case of a mixing layer. Hekd; and U ,are the velocities the bed-friction number is equal t&. However, since is

of undisturbed flow aty = —co and y = +oo, respectively. small, the growth rate of the most unstable pedtion is also
small. Hence, one can try to characterize the dgwveént of
instability analytically by means of weakly nonlareheory.

Following [12] we introduce the following “slow” viables
Wi (x,y,1) = ¢, (y) explik(x —ct)], 9

Us(y) =

The solution to (7) is sought in the form of a natmode

r=£%, £=g(x-cy), (13)
where is@, () the amplitude of the normal perturbatidhijs

the wave number an@is the phase speed of the perturbation. h c, th locit
Using (7) and (9) we obtain where Cg is the group velocity.

The stream function/, in (9) is replaced by
Lo, =0, (10)
W, (%, y.1.6,7) = A&, 1)@, () explik(x —ct)],  (14)

where

. . . where @, (Y)is the eigenfunction of the marginally stable
Lp=¢ [u,—c—-iSu,/k—-iB/k) , e _ _

. _ normal perturbation withS=S_,k =k, and c=cC_. The
+¢ (ZUO/R_'SUOy/k) objective is to derive equation for the evolutiofi the

+ 9(k2C— kU, Uy, +ikSu, /2+ikB). amplitude functionA(¢,7) .
Using (13) we replace the derivatives with respeck and

The boundary conditions are tin (4) by the following expressions

@, (F0) =0. (11)
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o0 0 te d O(y), 8 (y) and ¢5? (y) are unknown functions of.
ox ox of’ Substituting (18) into (17) and collecting the tindependent
d d 9 9 terms we obtain the following ordinary differentiatjuation
S o o Tyt E (15) for the function ¢ (y):

ot ot °af = ar 2 )

(0) *(0) (0) *(0)
Using (4), (6), (15) and collecting the terms tbamtain £? Zs[uoy (¢ + ¢2 )+ Uo (¢2 + ¢2 )]

we obtain + ZB(¢2(0) + ¢2(0))
Llwz = Cg (wlxxf + w]_yy{) - Zwlx.{t - 3u0wlxx.{ = ik(¢ly¢1yy - ¢ly¢1yy + ¢1¢;yyy - ¢:: ¢1yyy) (19)
Yl Y = Uy TVl ~ZUC @B, 48, + 2 b1y + By,

S
+ wlxwlyyy + uOyywlf - E[wlxxwly + 2u0¢1x{ (16) =0.

+ - +
Ayl = 2glloy *+ 2] The function @7 (y)satisfies the following boundary
2 conditions:
_E[uowlgy +l//1yl//1xy] - ZBwlx{'
$;” (xe0) = 0. (20)

Similarly, collecting the terms that contadt we obtain
Substituting (18) into (17) and collecting the term

Ly, = c, ([/jmg +‘//2yyg) Wy — 2¢2xa containing the first harmonic we obtain the equatio
+ 20U ~When ~ Wiy ~ U e ~ U1
U Woox ~ ¥ Wriee W2 Wrox ~W oW
Wy —Uyhigy Ul agy T ol iny +(k’c—Kk%u, — Ugy + kuOSi—Z)
t Wiy YW 2y T U W g Y WL 2y
ol Uty Pl ~ Wl
LY o + ooy + 2 elly + 22Ul 5 i
Ul H Wi Wy Y Way sy — Ul — 2Uo s, + (2ikc - 3iku, - K Uoyy ik, —U,S—2B)¢,
— 20y Yoy Wy AW
2yt WMyt 2U Y]

2
_E[uowszy +w1yw2xy +w1yw15y +w2yw1xy]

-B + ] Finally, using (18) and (17) for the terms that team the
Wowe +ee) (17)  second harmonic, we obtain

LRPIC) Y% _g, ®
(Up—c—-3y, )¢ (2R oy k)¢

+B(=i kgl +ikugpl?) (21)

= _iE(Cg - u0)¢1yy IUO ¢1y

with the boundary conditions

¢ (20) = 0. (22)

Analyzmg the structure of th.e right-hand side d6) and' 8ik3c¢‘2) —9 kc¢(2’ —8ik3uo¢§2’ + 2iku, g)y
using (14) we conclude tha¥, in (16) should be sought in
2 2 2 2
the form - 2Iku0yy¢é '+ g -4kPup? + VAVAN /2% 0

+2u,p 20 1+ dikugp D | R+ B(p), - 4k*¢) (23)
(18) = 'k(¢1¢1yyy - ¢1y¢1yy)
- S(2¢1y¢1yy - 3k2¢1¢1y) - 2I k¢:l.2y / R

W, = AN gL (y) + Ap (y) explik(x - ct)]
+ A6 (y) expR2ik(x —ct)],

where A'is the complex conjugate of Aand
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The boundary conditions are

$ (o0) = 0.

Comparing (10) and (21) we see that the left-haddssof
both equations are the same. Thus, (21) has aovlifitand

only if the right-hand side of

eigenfucntions of the corresponding adjoint problésee
[18]). The adjoint operatorL®and adjoint eigenfunction

@. are defined as follows
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where

_0-1 —_
(24) 0-—7,5_?11[1_,7

(21) is orthogona ll

= (620, -k,

% -t

and the complex coefficients,, J;, 1,and /7 are given by

(31)

(32)

S*% ..
,=3 | j P71 (KU, + 2Ug @, +2ugp, )y, (33)

[piLgidy = [p.Lo00dy. (25)
3, = j #71(c, —Uo)psy, -
The adjoint problem is
L*¢ =0, (26)
@7 () = 0. (27)

Integrating the left-hand side of (25) by parts arging
boundary conditions (11), (27) we obtain

asa — pa i i
I—¢1 =¢1W(UO_C_S~JOE_BE)

+ @5, (2u,, — Su ——2 0) (28)

“k "R
a2 2 ik uOy ;
+¢l(k C_k UO+ESJO_2F+B|k).

Solvability condition for (21) has the form

+0o A _ ~ ﬁ
[#ilte; ~)d, - 28,

+ 9P (—k’c, - 2k20+3k2u0 +U,,, —ikSu, — 2ikB)

+¢, (2ike, +ike —3iku, - uog— B)]dy,

(34)
= T¢f {6ik°’pS 2)¢1y 2i k¢1y @
+3k°¢, 95 +iK*9, (1) +9,)
—ik,, (89 +$.0) +ikp P, ~ ke 2,
+ikg, (P2, + 4.0 + 2ikg;,, 2
(35)

—[ —k2g, (P2 +¢7) +3k2p; g2

- 3_k4 ¢1 ¢1 2¢1yy (¢(O) ¢*(O)) + 2¢1yy @

+ 2¢1y(¢(0) * P )+ 20001,]
(¢(2’ b1y + 1) 6, )}y,

+(=2k?c +3K®U, + Uy,

—k?c, +iku,S+ 2Bik)g,]dy = O.

Hence, the group velocitgg can

The evolution equation for

A(¢,7)is determined from the solvability condition at th

third order. Multiplying the right-

using (18) and the solutions of the boundary vadteblems
(19)-(24) we obtain the complex Ginzburg-Landau adigun

for the amplitudeA(&, 7) of the form

2
9A _ A+ 52 '?—ﬂ|A|2
or FY

(29)

The coefficients of the Ginzburg-Landau equatiod) (Gan

be computed using formulas (31)-(35). Note thabiider to

be found from (29).

the amplitude functio

perform calculations it is necessary to solve thedr stability
roblem (10)-(11), the corresponding adjoint
26)-(28), three boundary value problems (19)-(2hd
€humerically evaluate integrals in (31)-(35). Conagtiatnal

prable

hand side of 015y¢15‘, procedure for such type of problems is describedeitail in

[17].

IV. CONCLUSIONS

Method of multiple scales is used in the paper rikeo to
derive an amplitude evolution equation for the masstable
(30) mode. The equation is obtained for the case of alosh
mixing layer which is slightly curved in the longiinal
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direction and contains small particles. It is shothat the
amplitude equation in this case is the complex Ring-
Landau equation. Explicit formulas for the calcidatof the
coefficients of the equation are derived.
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