Datorizēta mašīnu mehānisko sistēmu analīze(English)(1),20/21-R

Matrix methods in mechanism kinematics and dynamics. The method of constraints for planar kinematic analysis. Revolute, prismatic, gear and cam pairs are considered together with other 2 degrees-of-freedom types of constraints. Formal description of kinematic diagrams. The automatic assembly of the systems of equations for position, velocity and acceleration analysis. Geometry of masses. Forward and inverse tasks of geometric, statistic, kinematic and dynamic analysis. Dynamics of planar systems. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Relations between transfer velocity, angular velocity of rigid body and generalized velocities: analogue matrices. Simple applications of inverse and forward dynamic analysis. Numerical integration of first-order initial-value problems. Accuracy and stability of integration methods. Kinematics of rigid bodies in space. Reference frames for the location of a body in space. Euler angles and Euler parameters. Velocity, acceleration and angular velocity. Relationship between the angular velocity vector and the time derivatives of Euler parameters. Kinematic analysis of spatial systems. Basic kinematic constraints. Joint definition frames. Denavit-Hartenberg notation. The constraints required for the description in space of common kinematic pairs (revolute, prismatic, cylindrical, spherical). Equations of motion of constrained spatial systems. Computation of spatial generalized forces for external forces and for actuator-springdamper element. Computation of reaction forces from Lagrange’s multipliers.
Dynamical models of AC and DC electromotors, internal-combustion and diesel engines. Dynamical models of control systems: PID controllers.
2D simulation packages: Working model 2D.
3D simulation packages MSC ADAMS: ADAMS View.
Parametric optimization.Programs ADAMS Insight, EDAOpt.